
International Journal of Scientific & Engineering Research Volume 9, Issue 2, February-2018 6
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Proxy Caching Algorithm And The Improvements
To Be Made

Jyotsna Singh
Research Scholar, MCA

Thakur Institute of Management Studies, Career
Development and Research, Mumbai (MS), India

Surbhi Shukla

Research Scholar, MCA
Thakur Institute of Management Studies, Career
Development and Research, Mumbai (MS), India

 Abstract: With the growing number of World Wide
Web users, the constant load on servers is rapidly
increasing. It puts tremendous pressure on both network
load and server load. The Caching Technique has gained
massive popularity because it reduces both these loads by
importing copies of files from server that the client usually
accesses, thereby reducing traffic. It can either be done at
the client’s system or in the network (by a proxy server or
gateway). We assess the potential of proxy servers to cache
documents retrieved with protocols like HTTP, GOPHER,
FTP and WAIS World Wide Web browsers. This technique
brings down the response time by fetching results
comparatively faster. Proper utilization of time takes place
wherein a subset of documents is selected for caching, so
that a given performance metric is maximized. At the same
time, the cache must ensure consistency of the cached
documents. Cache consistency algorithms enforce
appropriate guarantees about the staleness of the cached
documents. An unified cache maintenance algorithm comes
into play, namely LNC-R-WS-U, which integrates both
cache replacement and consistency algorithms.

 Keywords: Proxy server, caching, caching policies,
caching algorithms.

I. INTRODUCTION
 In Computer Technology, A Proxy Server is a server
that acts as a mediator for the requests received from the
clients that demand information or resources from other
servers. Also known as ‘An Application Level Gateway,
it acts an an intermediary between a local network and
larger-scale network. Effectiveness of performance and
increased security are its pros. A Caching Proxy is a
function of a proxy server that caches Web Pages on the
server so that the page can be quickly retrieved by the
same or different user the next time that page is
requested. It is also referred to as ‘A Web Proxy Cache’.
Proxy Caching allows a server to act as an intermediate
buffer between a user and a provider of web content.
When a user accesses a website, proxies reply on behalf
of the originals servers, in split seconds.

 Without Caching, The WWW would become a
victim of its own success. An attempt to scale network
and server bandwidth to keep up with client demand is
an expensive strategy. An alternative to the above
method is caching. Caching effectively saves copies of

popular documents and migrates them from servers
closer to clients. It reduces delays. Network managers
see less traffic. Web servers see lesser hit rates because
most of the traffic is diverted to these cache servers. A
cache may be used on any of the following: a per-client
basis, within networks used by the Web, or on web
servers. The second solution, also known as a "proxy
server" or "proxy gateway" is studied with the ability to
cache documents. We use the term "caching proxy". A
caching proxy’s job is not an easy one. First, arrival
traffic is caused as a result of the union of the URL
requests of many clients. For a hit in case of a caching
proxy, the same document must be requested by the user
two or more times already or the same document is
supposed to be requested by two users. Second, a
caching proxy often operates as a second (or higher)
level cache, that processes only the misses left over from
Web clients that use a per-client cache or a client
specific cache (e.g., Mosaic and Netscape). The misses
are passed to the proxy-server from the client usually do
not contain a document requested twice by the same
user. The caching proxy is therefore, used for cache
documents requested by two or more users. This reduces
the fraction of requests that the proxy can satisfactorily
retrieve from its cache, known as the hit rate .How do
we determine the effectiveness of a caching proxy? To
answer this, we must first know how much inherent
duplication there is in the URLs arriving at a caching
proxy. We simulate a proxy server with an infinite disk
area, so that the proxy contains every document that has
ever been accessed. This gives an upper bound on the hit
rate that a real caching proxy can possibly ever achieve.
The input to the simulation is traces of all URL accesses
of three different workloads from a certain university
community during a semester. Overall, we see that there
is a 30%-50% hit rate. The maximum disk area required
for there to be no document replacement needs to be
examined. Then, we consider the case of finite disk
areas, in which replacement must occur, and compare the
hit rate and cache size on the basis of three replacement
policies: least recently used (LRU) and two variations of
LRU. LRU is shown to have quite a noticeable defect
that becomes more prominent as the need and frequency

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 2, February-2018 7
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

of replacements rises. The best replacement policies are
used to examine the effect on hit rate and cache size
pertaining to restrictions on document sizes to cache and
whether or not to cache only specific document
types,sizes, or URL domains.

II. EXISTING AND PROPOSED ALGORITHMS

A. Existing Algorithms
 Caching is done using in two forms in the Web. The
first being is a client cache, which is built into a Web
browser. A Web browser with caching stores not only
the documents currently being displayed in browsers, but
also documents that have been requested and accessed in
the past. Client caches are of two types: persistent and
non-persistent. A persistent client cache retains its
documents in between invocations of the Web browser;
Netscape uses a persistent cache. A non-persistent client
cache (used in Mosaic) deallocates any memory space or
disk usage that was being employed for caching when
the user quits the browser. Client specific caches
maintain consistency of cached files with server copies
by issuing an optional conditional-GET to the http server
or proxy-server.

 The second form of caching being explored here, is in
the network used by the Web (i.e., the caching proxy that
was mentioned earlier). The cache is located on a
machine on a path from multiple clients to multiple
servers. Some examples of caching proxies include the
CERN proxy server, the DEC SRC gateway, the UNIX
HENSA Archive, and in local Hyper-G servers.
Normally, a caching proxy is not anything like a
machine that operates a WWW client or an HTTP server.
It caches URLs generated by multiple clients.
Hierarchical usage of caching proxies is possible, so that
they cache URLs from other caching proxies. In this
case, we can identify caches as first level caches, second
level caches, and so on. A hierarchical arrangement is
just one possible configuration.

 The size and cost concerns make web caching a much
more severe problem than traditional caching. Below we
first summarize and take a look at a variety of web
caching algorithms proposed so far.

B. Image Capture

C. Algorithms used in the existing systems
 Cache algorithms (also frequently called cache
replacement algorithms or cache replacement policies)
are optimizing instructions—or algorithms—that
a computer program or a hardware-maintained structure
ought to follow to manage a cache of information stored
on the computer. When the cache is full, the algorithm
must make the choice as to which items to discard to
make room for the new ones.

 There are, in total, 17 existing caching algorithms
used for caching replacements, which attempt to
minimize various cost metrics, such as miss ratio, byte
miss ratio, average latency, and total cost. We provide a
brief overview of what these algorithms mean actually
along with description of few of them. In describing the
various algorithms, it is convenient to view each request
for a document as being satisfied in the following way:
the algorithm brings the newly requested document into
the cache and then filters out the documents until the
capacity of the cache is no longer exceeded. Algorithms
are then discerned by how they choose among
documents to evict. This view allows for the possibility
that the requested document may be evicted upon its
arrival into the cache itself, which means it replaces no
other document in the cache.

1) OVERVIEW:

The average memory reference time is

T = M * Tm + Th + E[1]

(1)

Where

 T = average memory reference time
 m = miss ratio = 1 - (hit ratio)
 Tm = time taken to access the main memory
when there is a miss (or, with multi-level
cache, average memory reference time for the
next-lower cache)
Th = the latency: the time to reference the
cache in case of a hit

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/Cache_replacement_policies#cite_note-ajsmith-1

International Journal of Scientific & Engineering Research Volume 9, Issue 2, February-2018 8
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

 E = various secondary effects, such as queuing
effects in multiprocessor systems

 There are two primary figures which determine the
merit of a cache: The latency, and the hit rate. There are
also a number of secondary factors influencing cache
performance.

 The "hit ratio" of a cache is defined as the occurrence
of searched - for item in the cache. More efficient
replacement policies to are required keep proper track of
usage information for improving the hit rate for a
particular cache size.

 The "latency" of a cache describes how long after
requesting a desired piece of information, the cache can
return that item (when there is a hit). Faster replacement
algorithms/strategies typically keep track of less usage
information. In the case of direct-mapped cache, there is
no information—to reduce the amount of time required
to update that information.

 Each replacement strategy is a compromise between
hit rate and latency.

 Hit rate measurements are typically performed
on benchmark applications. The actual hit ratio varies
widely from application to application. Video and audio
streaming applications often have a hit ratio close to
zero, because every bit of data initially read for the very
first time (a compulsory miss), utilized, and then never
read or written again. Even worse, many cache
algorithms (in particular, LRU) allow this streaming data
to fill the cache, unnecessarily pushing out of the cache
information that will be required soon (cache
pollution).[2]

Other things to consider:

 Items with different cost: retain items that are
expensive to obtain, e.g. those that take a long time to
get.

 Items taking up more cache space: If items have
different sizes, the cache may want to discard a large-
sized chunk of data to store several smaller ones.

 Items that expire with time: Some caches keep
information even after it expires (e.g. web browser
cache, a news cache, a DNS). The computer may get rid
of items because they have expired. No further caching
algorithm may be required on the basis of the size of the
cache.There are also various algorithms to
maintain cache coherency. This applies only to instances
where multiple independent caches are used for
the same data (for example many database servers
updating the single shared data file)
2) 2.3.2. FEW ALGORITHMS:

• Bélády's Algorithm

 We look for an algorithm that always discards the
information which will not be needed for the longest
period of time in the future. Since it is generally
impossible to predict how far in the future information
will be needed, this is generally not advised for
implementation in practice. The minimum can be
calculated only after thorough analysis and
experimentation, the effectiveness of the actually chosen
cache algorithm can be compared.

 At the moment when a page fault occurs, some set of
pages is in memory. As shown in the example, the
sequence of '5', '0', '1' is accessed by Frame 1, Frame 2,
and Frame 3 respectively. When '2' is accessed, it
replaces value '5', which is in frame 1 since it predicts
that value '5' is not going to be accessed in the future.
Just because a real-life general purpose operating system
cannot actually figure out predict when '5' will be
accessed, Bélády's Algorithm cannot be implemented on
such a system.

• First in First Out (FIFO)

 Using this algorithm, the cache behaves in the same
way as it behaves in a FIFO queue. The cache removes
the block accessed first irrespective of how many times
it was accessed before.

• Last in First Out (LIFO)

 With the help this algorithm, the cache behaves in
the exact opposite way as a FIFO queue. Recently
accessed blocks are removed irrespective of number of
times they have been accessed.

• Least Recently Used (LRU)

 Discards the least recently used items first. This
algorithm requires keeping track of what was used when,
which is not very cost-effective if one wants to make
sure the algorithm always removes the least recently
used item. Implementations of this technique require
"age bits" for cache-lines and then tracking the "Least
Recently Used" cache-line based on age-bits. In this kind
of an implementation, every time a cache-line is used,
the age of all other cache-lines changes. This is a family
of caching algorithms with 2Q by Betty O'Neil, Gerhard

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/Cache_replacement_policies#cite_note-2

International Journal of Scientific & Engineering Research Volume 9, Issue 2, February-2018 9
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Weikum Theodore Johnson and Dennis Shasha ,[3], and
LRU/K by Pat O'Neil, .[4].

The access sequence for the below example is A B C D
E D F.

 Once A B C D gets installed in the blocks with
sequence numbers ,1 is incremented for each new access
and when E is accessed, it is taken for a miss and needs
to be installed in one of the blocks. Since A has the
lowest Rank (A (0)), E will replace A.

• Most Recently Used (MRU)

 In contrast to LRU, it discards the most recently
used items first. From findings of the 11th VLDB
conference, Chou and DeWitt noted that "When a file is
being repeatedly scanned in a [Looping Sequential]
reference pattern, MRU is the best replacement
algorithm." For random access patterns and repeated
scans over large datasets MRU cache algorithms have
more hits than LRU due to their tendency to retain older
data .[5], some researchers had noted. MRU algorithms
are most useful in situations where the older an item is,
the more likely it is to be used.

Access sequence for the example below:A B C D E C D
B.

 Here, A B C D are placed in the cache as there is
some still space available. At the 5th access E, the block
which held D is now replaced with E as this block was
used most recently. Another access to C and in the next
access to D, C is replaced as it was the block accessed
just before D and so on.

• Least-Frequently Used (LFU)

 It counts how often an item is needed. Items that are
used least often are discarded first. This works very
similar to LRU except that instead of storing the value of
how recently a block was accessed, we store the value of
the number of times it was accessed. So, while running
an access sequence a block which was used least number
of times from our cache will get replaced. e.g., if A was
accessed 5 times and B was used 3 times and others C
and D were used 10 times each, we will replace B.

3) Adaptive Replacement Cache (ARC)

 Constantly balances between LRU and LFU, to
bring improvements in the combined result .[6] It uses
information about recently-discarded cache items to
dynamically adjust the size of the protected segment and
the probationary segment to make the best use of the
available cache space. Adaptive replacement algorithm
is explained with the example.

• Clock with Adaptive Replacement (CAR)

 Combines the advantages of Adaptive Replacement
Cache (ARC) and CLOCK. It has performance along the
dame lines as ARC, and substantially surpasses both
LRU and CLOCK in terms of performance. CAR is self-
tuning and requires no user-specified magic parameters.
It uses 4 doubly linked lists which includes two clocks

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/Cache_replacement_policies#cite_note-3
https://en.wikipedia.org/wiki/Cache_replacement_policies#cite_note-4
https://en.wikipedia.org/wiki/Cache_replacement_policies#cite_note-7
https://en.wikipedia.org/wiki/Cache_replacement_policies#cite_note-megiddo-13

International Journal of Scientific & Engineering Research Volume 9, Issue 2, February-2018 10
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

T1 and T2 and two simple LRU lists B1 and B2. T1
clock stores pages based on "recency" or "short term
utility" and T2 stores pages with "frequency" or "long
term utility". T1 and T2 contain those pages of the
cache, while B1 and B2 contain pages that have recently
been evicted from T1 and T2 respectively. The algorithm
tries to regulate the size of these lists B1≈T2 and B2≈T1.
New pages are then inserted in T1 or T2. If there is a hit
in B1, size of T1 is increased and similarly if there is a
hit in B2, size of T1 is decreased. The adaptation rule
used has the same principle as that in ARC, rely and
invest more in lists that will give more hits when more
pages are added to it.

• Pannier: Container-based caching algorithm
for compound objects:

 Pannier[7], like mentioned is a container-based flash
caching methodology which makes use of divergent
(heterogeneous) containers, in which blocks held have
highly varying access patterns. It uses a priority-queue
based survival queue structure to rank the containers on
the basis of their survival time, which is proportional to
the live data in the container. Pannier is built based on
Segmented LRU (S2LRU), which segregates out hot and
cold data. Pannier also employs a multi-step feedback
controller to throttle flash writes to ensure flash lifespan

D. Proposed Algorithm
After going through all the algorithms used in today’s
date,

We think of coming up with an algorithm that serves the
following purposes:

i. Cache Maintenance: The cached data must be

consistent and patched.
ii. Cache Latency: It is the amount of time that it

takes for information from the cache to
travel to the requested site. The cache
Latency must be less compared to the
algorithms mentioned above.

iii. Cache Coherency: Cache Coherency is the
uniformity of shared resource data that
ends up getting stored in multiple local
caches. Hence, only one memory must be
allocated for such data and the duplicates
should be erased, removing all the
redundancies.

iv. Cache Hit-rate: A cache is made up of a pool of
entries. The percentage of accesses that
result in cache hits or success is known as
the hit rate or hit - ratio of the cache. The
alternative situation, when the cache is
looked up and found not to contain data
with the desired tag, has become known as
a cache miss.

v. Pre-Fetching: Prefetching refers to fetching
information from web servers even before
they are desired. The prefetching process
will be highly essential for the
personalization of web details.

vi. Personalization:Personalization provides the
web pages as per the needs of the web
users.

III. CONCLUSION
 So as we have seen the proposed alogorithm we can
achieve desired properties like i) Reliability: The
algorithm should be available and reliable. Its integrity
should be a high priority and should be maintained at all
costs. ii)Cost-efficient: The algorithm should be cost-
efficient and resource-effective. There is no point in
spending effort on a system that doesn’t give the
expected results. iii) Usability: The algorithm must be
usable and should not create barriers for the new comers
to understand and implement. iv) Transparency: A Web
caching system should be transparent for the user. The
only results user should notice are faster response and
higher availability.

REFERENCES
[1] Partitioned cache and management method for selectively caching

data by type, Applicant - International Business Machines
Corporation, Publication date - Jul 16, 2002, Filing date - Nov 9,
1999,

[2] "Page Placement Algorithms For Large Real-Indexed Caches", by
R.E. Kessler and Mark D. Hill, University of Wisconsin. ACM
Transactions on Computer Systems, vol. 10, No. 4, Nov. 1992, pp.
338-359.

[3] Theodore Johnson University of Florida Gainesville, FL 32611
Dennis Shasha Courant Institute, New York University New York,
NY 10012 ’ and Novell, Inc. Summit, NJ 07901, bolume 7, issue
01, March 2001, pages 350-371.

[4] Computer Networks and ISDN Systems, Volume 27, Issue
2, November 1994, Pages 165-173

 [5] Shaul Dar, Michael J. Franklin, Björn Þór Jónsson, Divesh
Srivastava, and Michael Tan. Semantic Data Caching and
Replacement. IEEE Communications Surveys &
Tutorials (Volume: 6, Issue: 2, Second Quarter 2004)

[6] Computer Communications, Volume 24, Issue 2, 1 February 2001,
Pages 137-143

 [7] A survey of Web cache replacement strategies, ACM Computing
Surveys (CSUR) Surveys Homepage archive

Volume 35 Issue 4, December 2003 Pages 374-398 ACM New
York,NY, USA

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/Cache_replacement_policies#cite_note-Li-17
http://scholar.google.com/scholar?q=%22Page+Placement+Algorithms+For+Large+Real-Indexed+Caches%22
http://www.sciencedirect.com/science/journal/01697552
http://www.sciencedirect.com/science/journal/01697552/27/2
http://www.sciencedirect.com/science/journal/01697552/27/2
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9739
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9739
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5342235
http://www.sciencedirect.com/science/journal/01403664
http://www.sciencedirect.com/science/journal/01403664/24/2
http://csur.acm.org/
https://dl.acm.org/citation.cfm?id=J204&picked=prox&cfid=835770708&cftoken=24330589
https://www.acm.org/publications

	I. INTRODUCTION
	II. EXISTING AND PROPOSED ALGORITHMS
	A. Existing Algorithms
	B. Image Capture
	C. Algorithms used in the existing systems
	1) OVERVIEW:
	2) 2.3.2. FEW ALGORITHMS:
	 Pannier: Container-based caching algorithm for compound objects:

	D. Proposed Algorithm

	III. Conclusion
	REFERENCES

